

SPRINT-WP3-D-PDM-001-02 Page 1 of 50 17/05/2019

Contract No. H2020 – 826172

 SEMANTICS FOR PERFORMANT AND SCALABLE

INTEROPERABILITY OF MULTIMODAL TRANSPORT

D3.1 - Analysis of the state-of-the-art and best practices in

architecting systems processing semantic data

Due date of deliverable: 30/04/2019

Actual submission date: 20/05/2019

Leader/Responsible of this Deliverable: POLIMI

Reviewed: Y

Document status

Revision Date Description

0.7 19/04/2019 First complete draft

0.9 30/4/2019 Revised version of complete draft

0.99 07/05/2019 First version

1.0 09/05/2019 Consolidated version for TMC approval

1.1 17/05/2019 Final Version after TMC approval and Quality check

Project funded from the European Union’s Horizon 2020 research and innovation

programme

Dissemination Level

PU Public X

CO Confidential, restricted under conditions set out in Model Grant Agreement

CI Classified, information as referred to in Commission Decision 2001/844/EC

Start date of project: 01/12/2018 Duration: 25 months

SPRINT-WP3-D-PDM-001-02 Page 2 of 50 17/05/2019

Contract No. H2020 – 826172

EXECUTIVE SUMMARY

This deliverable analyzes the state of the art that is relevant for the future developments (in

terms of improved architecture) of the Shift2Rail Interoperability Framework. The deliverable

first provides an overview of the Interoperability Framework, to foster a common

understanding of its goals and main functions. Then, it studies a few architectural

approaches on which the new reference architecture of the Interoperability Framework that

will be defined in the course of the SPRINT project could be based. It also surveys how the

interoperability problem has been tackled in other domains that have characteristics similar

to the transportation domain. Then, it provides an assessment of the developments related

to the Interoperability Framework carried out in past Shift2Rail projects. Finally, it concludes

with a discussion pointing out the approaches and techniques that seem the most suitable

for the future developments of the Interoperability Framework.

SPRINT-WP3-D-PDM-001-02 Page 3 of 50 17/05/2019

Contract No. H2020 – 826172

ABBREVIATIONS AND ACRONYMS

Abbreviation Description

API Application Programming Interface

BPMN Business Process Model and Notation

EIP Enterprise Integration Pattern

EU European Union

GA Grant Agreement

GTFS General Transit Feed Specification

H2020 Horizon 2020 framework programme

HATEOAS Hypermedia as the Engine of Application State

IaaS Infrastructure as a Service

IF Interoperability Framework

IoT Internet of Things

JAR Java ARchive

JSON JavaScript Object Notation

JU Shift2Rail Joint Undertaking

LSM Linked Stream Middleware

OS Operating System

P2P Peer to Peer

PaaS Platform as a Service

RASIC Reference Architecture for Semantically Interoperable Clouds

RDF Resource Description Framework

REST Representational State Transfer

S2R Shift2Rail

SaaS Software as a Service

SSN Semantic Sensor Network

UDDI Universal Description Discovery and Integration

URI Uniform Resource Identifier

SPRINT-WP3-D-PDM-001-02 Page 4 of 50 17/05/2019

Contract No. H2020 – 826172

VM Virtual Machine

XML eXtensible Markup Language

WAR Web Application Resource

W3C World Wide Web Consortium

WSDL Web Services Description Language

SPRINT-WP3-D-PDM-001-02 Page 5 of 50 17/05/2019

Contract No. H2020 – 826172

TABLE OF CONTENTS

Executive Summary .. 2

Abbreviations and Acronyms .. 3

Table of Contents.. 5

List of Figures ... 6

List of Tables .. 6

1. Introduction ... 7

2. Overview of the interoperability framework .. 8

2.1 Asset Manager .. 11

2.2 Interoperability Services .. 14

3. Architectural Patterns for Distributed and Heterogeneous Systems .. 16

3.1 Service-Oriented Architectures .. 16

3.2 Cloud-Based Architectures .. 23

3.3 Peer-2-Peer Architectures ... 26

4. Survey of Best Practices to Address Interoperability in Distributed and Heterogeneous Systems
 ... 29

4.1 The bIoTope Project .. 29

4.2 OpenIoT - The Open Source Internet of Things... 30

4.3 Interoperability in Cloud Frameworks .. 30

5. Results of the Assessment of the Functions implemented in companion projects 32

5.1 IT2RAIL project ... 32

5.2 ST4RT Project... 39

6. Discussion .. 44

References ... 48

SPRINT-WP3-D-PDM-001-02 Page 6 of 50 17/05/2019

Contract No. H2020 – 826172

LIST OF FIGURES

Figure 1 Generic Architecture of the Interoperability Framework ... 9

Figure 2 – Internal Components of the Interoperability Framework .. 11

Figure 3-Sketch of Microservices-based Architecture of Interoperability Framework 19

Figure 4 Containerization of Converters .. 20

Figure 5 Modularization of the Converter through Content Enricher Pattern 23

Figure 6 – This figure depicts different cloud models, example and enabling technologies. It also
shows which cloud model is more suitable/applicable for different S2R transportation actors.
 .. 24

Figure 7 Runtime Environment for the IF .. 25

Figure 8 Federated IF ... 27

Figure 9 - Apache Tomcat web application server ... 32

Figure 10 - Apache WSO2 Carbon Installation (Asset Manager) ... 33

Figure 11 - Ontotext GraphDB Semantic Graph database .. 34

Figure 12 – IT2Rail interoperability framework services deployment on Tomcat container 34

Figure 13 - SoapUI configuration for testing campaign .. 35

Figure 14 - Travel Expert Broker automated test ... 37

Figure 15 - IT2Rail services packaging ... 38

Figure 16 - Deployed integrated IT2Rail ST4RT converter services .. 41

Figure 17 - SoapUI projects for Interoperability Framework testing ... 42

LIST OF TABLES

Table 1 Summary of tools, techniques and technologies suitable for different components of IF .. 44

Table 2 Comparison of different Deployment Architectures ... 45

file://///ice/public/R&D/1.%20EU%20R&D/6.%20Horizon%202020/4.%20Projects/SPRINT/6.%20Deliverables/D3.1/D3.1_-_Analysis_of_the_state-of-the-art_after%20QC.docx%23_Toc9002904
file://///ice/public/R&D/1.%20EU%20R&D/6.%20Horizon%202020/4.%20Projects/SPRINT/6.%20Deliverables/D3.1/D3.1_-_Analysis_of_the_state-of-the-art_after%20QC.docx%23_Toc9002905
file://///ice/public/R&D/1.%20EU%20R&D/6.%20Horizon%202020/4.%20Projects/SPRINT/6.%20Deliverables/D3.1/D3.1_-_Analysis_of_the_state-of-the-art_after%20QC.docx%23_Toc9002906
file://///ice/public/R&D/1.%20EU%20R&D/6.%20Horizon%202020/4.%20Projects/SPRINT/6.%20Deliverables/D3.1/D3.1_-_Analysis_of_the_state-of-the-art_after%20QC.docx%23_Toc9002907
file://///ice/public/R&D/1.%20EU%20R&D/6.%20Horizon%202020/4.%20Projects/SPRINT/6.%20Deliverables/D3.1/D3.1_-_Analysis_of_the_state-of-the-art_after%20QC.docx%23_Toc9002908
file://///ice/public/R&D/1.%20EU%20R&D/6.%20Horizon%202020/4.%20Projects/SPRINT/6.%20Deliverables/D3.1/D3.1_-_Analysis_of_the_state-of-the-art_after%20QC.docx%23_Toc9002909
file://///ice/public/R&D/1.%20EU%20R&D/6.%20Horizon%202020/4.%20Projects/SPRINT/6.%20Deliverables/D3.1/D3.1_-_Analysis_of_the_state-of-the-art_after%20QC.docx%23_Toc9002909
file://///ice/public/R&D/1.%20EU%20R&D/6.%20Horizon%202020/4.%20Projects/SPRINT/6.%20Deliverables/D3.1/D3.1_-_Analysis_of_the_state-of-the-art_after%20QC.docx%23_Toc9002909
file://///ice/public/R&D/1.%20EU%20R&D/6.%20Horizon%202020/4.%20Projects/SPRINT/6.%20Deliverables/D3.1/D3.1_-_Analysis_of_the_state-of-the-art_after%20QC.docx%23_Toc9002910
file://///ice/public/R&D/1.%20EU%20R&D/6.%20Horizon%202020/4.%20Projects/SPRINT/6.%20Deliverables/D3.1/D3.1_-_Analysis_of_the_state-of-the-art_after%20QC.docx%23_Toc9002911

SPRINT-WP3-D-PDM-001-02 Page 7 of 50 17/05/2019

Contract No. H2020 – 826172

1. INTRODUCTION

This deliverable discusses the state of the art that is relevant for the definition and the

development of the reference architecture for the Shift2Rail (S2R) Interoperability

Framework (IF). The analysis carried out in this deliverable will be used in Task 3.4 “Design

and comparison of alternative architectural solutions for the IF” of the SPRINT project to

identify the best architectural solutions to build an IF meeting the requirements that will be

identified in Task 3.2 “Elicitation of performance and scalability requirements for the IF”.

To provide a common understanding of what are the purposes and main functions of the

S2R IF, Section 2 first gives an overview of the IF. This overview is not intended to provide

an early definition of the architecture of the IF. Rather, its goal is to summarize the current

conceptual status of the IF: what it aims to be, what are its main elements and the very high-

level functions they provide.

Then, sections 3, 4 and 5 carry out the main analysis of the relevant state of the art, which

follows different directions.

Section 3 presents the architectural approaches and patterns that are the best candidates

to be the basis for the future reference architecture of the IF. In particular, it focuses on the

service-oriented approach (Section 3.1), on cloud-based architectures (Section 3.2), and on

peer-to-peer systems (Section 3.3).

Section 4 analyzes how the interoperability problem has been tackled in other domains that

have similar characteristics as the transport domain (heterogeneity of standards, high

number of stakeholders, etc.); in particular, it focuses on the Internet of Things and Cloud

systems domains.

Section 5, instead, focuses on the Shift2Rail context, and assesses the results of a pair of

previous projects, IT2Rail [1] and ST4RT [2] that have developed technology that is part of

the S2R IF.

Finally, Section 6 summarizes the findings of the analysis of the previous sections, and

highlights which are the most promising approaches for the future developments of the S2R

IF.

SPRINT-WP3-D-PDM-001-02 Page 8 of 50 17/05/2019

Contract No. H2020 – 826172

2. OVERVIEW OF THE INTEROPERABILITY FRAMEWORK

The provision of truly customer-centric mobility services across the Single European

Transport Area requires advanced ICT applications that can discover, access and combine

mobility solutions from multiple Service Provider Companies. From a digital system

engineering point of view, these applications must be able to coordinate the execution of

complex computational tasks that are inherently distributed on multiple heterogeneous

“nodes” of an open network with no centralized control.

The IF is designed to provide these applications with a semantically consistent abstraction

of ICT resources offered by Service Provider Companies, insulating them from the

“mechanics” of operating remotely over networks and across multiple communications

protocols and/or data formats. Conversely, it is designed to allow Service Provider

Companies to leverage without expensive adaptations their own native ICT computing

environment and resources as elements of an end-to-end intermodal mobility solution,

insulating them from the specifics of the customer front-end applications.

As such, the Interoperability Framework provides “distribution transparencies”, as defined

by the “ITU-T Rec. X.903 | ISO/IEC 10746-3: Architecture” standard for open distributed

processing [3], enabling complexities associated with system distribution to be hidden from

applications where they are irrelevant to their purpose. These include:

• access transparency, which masks differences of data representation and invocation

mechanisms for services between systems;

• location transparency, which masks the need for an application to have information

about location in order to invoke a service;

• relocation transparency, which masks the relocation of a service from applications

using it;

• replication transparency, which masks the fact that multiple copies of a service may

be provided in order to provide reliability and availability.

SPRINT-WP3-D-PDM-001-02 Page 9 of 50 17/05/2019

Contract No. H2020 – 826172

Access and location transparencies are achieved by leveraging semantic interoperability

principles and technologies: knowledge about the domain problem, which is typically held

by human analysts and programmers, is formalised in a set of logical statements, or

“axioms”, written in a standard computer language available for machine processing. Human

knowledge is thus transferred to machines and shared by them. Any particular

representation of concepts and relationships in a specific data structure is associated,

through a process of annotation, with its interpretation in terms of the domain problem.

Machines can therefore discover and leverage equivalence relationship between different

data formats with common meaning, and automate, therefore, the translation across these

formats. Automated computer logical inference replaces human programming of software to

operate on different – but equivalent – data formats however they may be exchanged.

Semantically-annotated data is furthermore linked to constitute a shared semantic graph, or

“web of transport data”, whose physical distribution across networked machines is invisible

to consuming services.

Figure 1 depicts the generic architecture and scope of IF which spans two logical planes

called Data Layer and Service Layer. A layer in this architecture is a way of grouping a

related set of functionalities. In other words, there is not necessarily a predefined relation

between different components of different layers. A given functionality might be performed

as cooperation among different layers or independently.

The rest of this section first provides an overview of the two layers, and of some security

aspects related to issues of data access. Then, it describes in some further detail the

elements of the Service Layer, and in particular the Asset Manager (Section 2.1) and the

Interoperability Services (Section 2.2).

Rest	of	the	world

Triple	
Store

Ontologies
Other	data

Sh
ar

e
d

	d
at

a
Se

rv
ic

e
s

Auxiliary	
Services

Meta-data

Interoperability
Services

Asset	Manager

Secure	access	to	data

Travel	Expert
Meta	data

Service	
descriptions

Figure 1 Generic Architecture of the Interoperability Framework

SPRINT-WP3-D-PDM-001-02 Page 10 of 50 17/05/2019

Contract No. H2020 – 826172

Data Layer

Generally speaking, the travel services provided by different transportation sectors usually

are not an isolated set of operations, but they require data collection from many sources.

Such data may comprise a wide range of categories and types including various standards

and specifications, transportation ontologies, code lists, historical mobility data, etc.

Currently, access to data is achieved through one-to-one data exchange among different

parties. Given the divergence of standardization within and across the transportation

domain, such data exchange should be then followed by a hard-coded translation data

model and standardization of source data to the desired specification. One of the central

goals of the IF is to overcome this barrier through the provision of semantic interoperability.

Firstly, by the development of a reference ontology defining a shared meaning of the

exchanged information and secondly, by conversion and enrichment of non-interoperable

and heterogeneous data to this shared model. In this direction, the Data Layer relies on the

back-end databases and management of database operations needed to handle collection,

storage, and retrieval of data. It necessarily includes RDF stores keeping RDF graphs such

as ontologies, enriched meta-data (according to the reference ontology) and meta-data

generated by the Asset Manager describing different assets.

Furthermore, it could (optionally) contain other types of data stores (e.g., to store GTFS

data), fostering a sharing ecosystem where different actors expose data and utilize data

offered by other parties, while respecting privacy and security concerns.

Accordingly, the technologies, standard and patterns that are most relevant for this layer

include Triple Store data bases such as RDF4J [4] and Jena [5], and Graph DBs such as

Neo4j [6] and Amazon Neptune [7]. In addition, this layer should practice and follow the

Linked Data concept [8]. Linked data is a method of exposing and publishing structured data

using web technologies and interlinking the ontologically-relevant pieces of knowledge

together. Linked data envisions a structured web of self-describing data (using vocabularies,

URI and RFD) where global data graphs spanning through heterogeneous data sources

could be discovered, navigated and queried.

Service Layer

The Service Layer in the IF plays a key role to envision a unified and smooth collaboration

among various travel service providers as well as consumers of such services, including IP4

applications. In this context, we have defined three categories of services, namely Asset

Manager, Interoperability Services and Auxiliary Services. While the services offered by the

Asset Manager cover the generic operations required for overall management and

accessibility of IF, Interoperability Services include a set of special-purpose operations to

bridge the interoperability gap between fragmented transportation operators. Finally, any

party could expose its services to be explored and utilized by others; in the scope of the IF,

we call Auxiliary Services the services supporting these features.

SPRINT-WP3-D-PDM-001-02 Page 11 of 50 17/05/2019

Contract No. H2020 – 826172

Security Aspects

The Security aspects in the IF are related to how it accesses data described in the Asset

Manager. As described before, the IF focuses on enabling semantic interoperability by

providing users the tools and building blocks that can be used to implement an

interoperability solution. It is not meant to be a database or a centralized solution, and its

main principle is that data should reside as much as possible in the originating systems. To

this extent, the main intended usage of the Asset Manager is to manage metadata about

assets, therefore storing pointers to data, not data itself.

The information contained in the Asset Manager can be used to enable more advanced

features, and it is a key feature of the Asset Manager that it should be able to access

referenced data. In case of publicly available data, or when the Asset Manager is used to

store data (which is allowed, although it is not the intended use), the IF can leverage it to

increase the automation level and to lower the effort of implementing an interoperability

solution for a transport operator. In case of private data, protected via any authentication

scheme (username and password, OAuth, JSON Web Token or any other means), this is

not possible unless the Asset Manager is provided with the user’s credentials for the specific

resource. This could open security holes since the Asset Manager would also store highly

sensible information. It is yet to be investigated whether the automation solutions could be

made available for private remote data, and whether such solutions could benefit from an

explicit description of the authentication schemes to be included in the assets’ metadata.

2.1 ASSET MANAGER

 The Asset Manager is a pivotal component of the IF offering the basic functionality to

publish, share, discover and manage various artifacts that might be published/utilized by

Sh
ar

e
d

	d
at

a

Triple	

Store

Ontologies

Service	

descriptions

Travel	Expert
Meta	data Other	data

Meta-data

Secure	access	to	data

Se
rv

ic
es

Rest	of	the	world

Auxiliary	
Services

Interoperability
ServicesAsset	Manager

Front	Store Back-Office

Asset	Discovery

Artefact	Registry

Life-Cycle	Management

Resolver

Converter

Location	Resolver

Travel-Expert	

Resolver

Trip-Tracker	

Resolver

Distributed	SPARQL

End	point

Event-Source	

Resolver

Service	Reg.

Ontology	Reg.

Figure 2 – Internal Components of the Interoperability Framework

SPRINT-WP3-D-PDM-001-02 Page 12 of 50 17/05/2019

Contract No. H2020 – 826172

external clients and other internal components of the IF such as Converters and Resolvers

(see also Section 2.2). As its same suggests, this component is centered around the concept

of Asset. Its primary objective is the provision of tools for the registration, storage and then

the discovery of such assets. In the scope of the IF an asset includes – but is not limited to

– ontologies, data sets and service descriptions for interoperability services such as

converters and auxiliary services. The Asset Manager hence constitutes the initial point of

interaction with the IF from the external client point of view, and it is the key element that

interconnects different components and layers of the IF from an internal perspective.

The Asset Manager includes a number of internal components, which are shown in Figure

2, and which are described in the rest of this section.

2.1.1 Front Store

The Front Store is a composite component maintaining necessary functions, such as the

Asset Discovery described below, aiding internal/external service and data consumers to

interact with IF.

Asset Discovery

Asset discovery is the capability of automatically identifying assets according to certain

requirements. Such requirements can vary from Asset type to Asset type, therefore this

component allows defining multiple ways to express requirements related to a specific Asset

type. The discovery capabilities are offered through a set of configurable Web APIs, each

one tailored to let users query for a specific aspect (or set of aspects).

This feature is enabled by the SPARQL [9] query capabilities of the RDF repository used to

store metadata. When the discovery API is configured to search for Assets belonging to

different Asset types, it exploits the common set of metadata which are used to describe all

the Assets. When referring to a specific Asset type, the discovery API can rely on the specific

metadata of each Asset type.

2.1.2 Back Office

This composite component refers to suites of functions and services that are mainly of

interest for the internal/external service/data providers, including Life Cycle Management,

Artefact Registry and Distributed SPARQL endpoint.

Life Cycle Management

It is an optional component which supports a formal definition of the workflow sequence of

stages that must be followed by different types of assets. Life cycle management in the

scope of the IF might be applied to track the evolution of a single asset, or to enable a

particular workflow process. The former refers to the definition of the different states in which

an asset can be (e.g., creation, approval, revision, removal), where the transition between

each pair of states should be carefully tracked by the asset manager. The latter includes the

situation where the coordination of multiple services is defined as a workflow. For instance,

SPRINT-WP3-D-PDM-001-02 Page 13 of 50 17/05/2019

Contract No. H2020 – 826172

the deployment of a particular service should be triggered upon completion of another

service/process.

BPMN [10] is the best-known standard for the definition of workflow definition/assertion. In

addition, the availability of different supporting platforms, such as camunda [11], that support

BPMN through a graphical user interface makes this a suitable and practical approach that

could be exploited within the IF.

Artifact Registry

The Artifact Registry is the component which stores relevant metadata about all the known

artifacts. This component acts also as a transformation layer from the JSON representation

of the artifacts which is used in the Web APIs to the internal representation inside the RDF

repository.

This component can be configured to host different Artifact Types, such as Ontologies,

Services and RDF Datasets. Each artifact type features:

• A common set of metadata expressed via vocabularies such as DCAT-AP [12] and

ADMS [13]. This enables a uniform way of discovering assets via standard SPARQL

queries.

• A specific set of metadata expressed in JSON-Schema.

• A set of lifecycle management processes. This enables identifying the processes to

be triggered when an operation is attempted on an artifact.

• The instructions required to convert metadata from the JSON object provided by the

user to their RDF version.

Distributed SPARQL endpoint

The distributed SPARQL endpoint (also known in the literature as federated SPARQL query

processor) is a component that is able to evaluate SPARQL queries over a set of SPARQL

endpoints that may belong to different organizations (and hence available under different

domain names), providing a unified access to a complementary set of (sometimes

overlapping) knowledge graphs.

The concept of federated query processing in SPARQL was not present in the initial version

of SPARQL (SPARQL1.0) and was introduced in SPARQL1.1, with the inclusion of the

SERVICE clause in SPARQL queries, which is used to provide references to the SPARQL

endpoints to be considered. There are also many works in literature that consider that

SPARQL queries may be written without specifying the exact location (aka SPARQL

endpoint) where each graph pattern will be evaluated, and hence the federated query engine

is responsible for locating the SPARQL endpoints where the different parts of the SPARQL

query will be evaluated. That is, these works include an additional step of data source

identification and query planning. This is done in systems like FedX [14] and ANAPSID [15].

SPRINT-WP3-D-PDM-001-02 Page 14 of 50 17/05/2019

Contract No. H2020 – 826172

2.2 INTEROPERABILITY SERVICES

Interoperability Services comprise the set of functions, processes and tools that are

specifically designed to fill the interoperability gaps between the heterogeneous operators

of the mobility and transportation sectors and facilitate the seamless co-operation among

them. These services address the generic and primary interoperability requirements that are

shared among various actors of the transport ecosystem and might be utilized by them in

different manners and to accomplish different goals and applications.

Figure 2 shows the main elements of the set of Interoperability Services, which are

described in the rest of this section.

2.2.1 Resolver

Resolver services are specialized Interoperability Services dedicated to providing access,

location, relocation and replication transparencies to interacting applications, masking them

from the physical distribution, access protocols and formats of meta-data and data resources

available in the Data Layer. Example resolvers developed in the IT2Rail project [1] are the

following:

• Location Identification returns geographical coordinates of Locations that a

Traveller requests by name.

• Locations Resolver returns a list of Stop Places within a requested radius from a

point specified by its geographical coordinates. It is used during the Shopping

process to identify transportation stops in the vicinity of Locations selected by

Travellers from the list returned by Location Identification.

• Network Statistics Provider generates “meta routes” operated by Transportation

Service Providers. These “meta routes” are elements in the construction of meta-

network used by the Shopping process.

• Travel Expert Resolver identifies Travel Expert and Booking Engine web services

that can generate offers and bookings for specified “meta travel episodes” that satisfy

a Traveller’s mobility request at the time of Shopping and Booking. It is used by the

orchestrators to identify the subset of networked Travel Experts that participate in a

coordinated distributed shopping and booking one-stop-shop instance.

• Navitia Decoder associates Stop Places and Transportation Services with the

encodings used by the Navitia platform1 for use by Trip Tracking in the identification

of disruptions.

• Travel Expert and Booking Engine Brokers are a special type of resolvers

(according to the definition above), which mediate the interaction between the

1 https://www.navitia.io/

https://www.navitia.io/

SPRINT-WP3-D-PDM-001-02 Page 15 of 50 17/05/2019

Contract No. H2020 – 826172

Shopping and Booking orchestration functions, respectively, and the Travel Expert or

Booking Engine services provided by Transport Service providers for the generation

of offers and bookings that satisfy Traveller’s mobility requests.

2.2.2 Converter

As mentioned earlier, the primary goal of the IF is to overcome the fragmentation of the

transportation ecosystem by fostering semantic interoperability, which smooths the

interactions and cooperation among transport-related services despite the heterogeneity of

the underlying data models. A system is semantically interoperable when exchanged data

could be understood unambiguously and interpreted uniformly. In this direction, Converters,

which act as adapters between two distinct formats and are able to map the information

expressed in one format to the other, are essential elements in the IF.

SPRINT will extend the Converter (briefly overviewed in Section 5) that was developed in

the ST4RT project [2], with the aim to improve its performance and automation. The core

idea behind the future enhancement of the Converter is the concept of componentization –

or modularity – which is broadly accepted as a good practice in software engineering. The

current body of the Converter component has been built as a sequence of loosely coupled

phases, which fosters the idea of transforming it into a modular architecture. More precisely,

the Lifting Phase exploits an annotation-based approach to translate java objects

representing data described in a source format into RDF graphs. It is then followed by an

Enrichment Phase to fill in any missing data. Similarly, in the reverse process, the Lowering

Phase takes the aforementioned RDF graph to build the desired instances of Java classes

representing data described in the target format. In between, there are two more phases,

namely the Ontology Loading Phase and the Rule Transformation Phase, which provide

additional support to expand and modify the RDF graph through inference and/or dedicated

transformation rules. Each of these phases could be implemented as a stand-alone module

to maximize the performance of the Converter, which leads to an overall performance

enhancement.

The benefits of the decomposition of the Converter into smaller independent units, especially

when implemented with cutting-edge technologies, promise to be significant (see also

Section 6). The next section surveys various architectural options that could be used to

improve the Converter.

SPRINT-WP3-D-PDM-001-02 Page 16 of 50 17/05/2019

Contract No. H2020 – 826172

3. ARCHITECTURAL PATTERNS FOR DISTRIBUTED AND

HETEROGENEOUS SYSTEMS

This section overviews the general architecture patterns suitable for construction of the IF

given the distributed and heterogeneous nature of mobility and transport domain. In

particular, it first overviews service-oriented architectures (Section 3.1), then it studies cloud-

based patterns (Section 3.2), and finally it tackles peer-to-peer architectures (Section 3.3).

3.1 SERVICE-ORIENTED ARCHITECTURES

The Service-Oriented approach is among the most popular paradigms in distributed

computing. The core idea is to encapsulate in, and expose the functions offered by the

system as “Services”. In this context, a service refers to a contractually specified functionality

with specific properties such as discoverability, location transparency, loose coupling,

interoperability [16].

Given the fragmented transportation ecosystem composed of administratively and

geographically distributed actors and operators, service-based techniques and technologies

seem relevant approaches to build the IF. Service-Oriented Patterns and technologies could

be categorized mainly in two different levels: how to design and develop a single service

and how to design and develop an ecosystem of services co-operating with one another. In

the following we first overview the main standards and architectural principles to build

services and manage their relevant aspects (Section 3.1.1), then we provide an overview of

the leading trends of service-based frameworks (Section 3.1.2).

3.1.1 Service design

In this section we overview the main trends in the development of service-based systems.

WS-*

WS-* standardization (often referred as SOAP) is considered as the legacy model for

architecting service-oriented systems. It is composed of a stack of technologies, including

SOAP (an XML-based language used to define the messaging architecture and format),

XML for the payload scheme, WSDL [17] specifications for the description of the interface

and capabilities of a service, and most often HTTP as transportation protocol. On one hand,

one of the best features of SOAP is its systematic approach to the discovery and binding of

a service – through Universal Description Discovery and Integration (UDDI) and many well-

established distributed/centralized directory-based discovery mechanisms – which is one of

the primary concerns of the IF. On the other hand, WSDL and the discovery process are

mainly focused on the characterization of “syntactical” aspects of services; even if many

parallel approaches such as WSMO [18] and WSDL-S [19], have been conducted to

incorporate semantics into WSDL, the performance and scalability of those solutions are still

subject of debate. However, given that many already existing systems in transaction

ecosystems are built on and/or interacting with SOAP, semantic annotation of service

SPRINT-WP3-D-PDM-001-02 Page 17 of 50 17/05/2019

Contract No. H2020 – 826172

descriptions seems among the promising practical approaches within the IF to bridge the

gap and enhance pure SOAP-based systems.

REST

REST is the dominant development paradigm in the modern web due to its salient features

including simplicity, higher performance and smaller bandwidth usage. Moreover, REST

principles are mainly focused on standardization of interfaces and it is quite flexible for

dealing with various data-formats in addition to XML, which is an important factor in the

provision of interoperability. Yet the most relevant principle of RESTful architectures in the

context of the IF is the concept of HATEOAS (Hypermedia as the Engine of Application

State).

Hypermedia [20] is a well-known concept in the web, through which the human user can find

any information only by following links (URI) and interact with a server/application using

forms. Accordingly, The HATEOAS principle of REST enables the clients (machines in this

case) to bind and interact with a service without additional knowledge of service interfaces.

HATEOAS in REST is mainly achieved by attaching meaningful links/URIs to the data

models of the transferred data and machine understandable semantics/metadata to such

links.

The most famous resource description approaches to build hypermedia APIs include Hydra

[21], HAL [22] and Siren [23]. Hydra introduces a vocabulary to specify which types of

actions one can perform on a given resource. HAL is a media type which utilizes the concept

of link relation to define semantic relations among several resources in a machine-readable

format that allows clients to easily navigate through resources. Finally, Siren, provides both

resource descriptions, allowed actions on resources, and information about the relation of a

resource to other resources.

These specifications tackle a fundamental problem in the web, which is also present in the

web of transportation and related service providers’ APIs. To give an example, a client

application that is developed to interact with a particular travel service usually cannot

operate – on the fly – with another one. The application is statically paired with a service

and the necessary information to engage with the service is hard-coded at design time.

However, each travel service has its own data model and API specification. Accordingly, an

application developer must study the API documentation of a service – at design time – and

then develop the client application to consume such service. In this direction, the main

benefit of the aforementioned media types is to enable the development of self-descriptive

and vendor-independent API representations to allow for the seamless automated

integration of a – generic – client for any service.

Service Composition and Workflow (Mash-Up)

Service Composition refers to the set of processes followed to mash several existing

services up in order to create an added-value service. It is relevant in the context of the IF

to compose multiple Resolver services, or combination of Resolvers and Converters, or a

SPRINT-WP3-D-PDM-001-02 Page 18 of 50 17/05/2019

Contract No. H2020 – 826172

combination of other auxiliary services with Converters. For instance, a client might be

interested to a service S1 which provides the desired output represented through standard

A, while the expected/desired standard used by the client is B. In this case, a mash-up

composed of service S1 and an A-B converter service could be created to enable the user

to interact with S1 following the required standard.

3.1.2 Service-oriented frameworks

Service Oriented Middlewares

Middleware-based approaches are often known as the best practice to bridge legacy

systems/standards/functions and modern implementations following a façade and adapter-

based pattern. The fact that the IF needs to deal with many already-existing legacy systems

is another reason that makes middleware approaches relevant to our study.

In general, the term middleware refers to a software layer that resides between the

technological layer and the application to hide to application developers the details and

complexity of various underlying technologies. It potentially provides a unified and

homogeneous view and interfaces to underlying data and functions. As for other domains,

Service-Oriented approaches have become the dominant model for middleware

development in comparison with other types of middleware such as Event-Driven and

Message-Oriented middlewares in distributed systems.

Microservices

The Microservice architecture is inspired by the service-oriented computing and breaks the

so-called monolithic application into independently executable artefacts – i.e., “micro”

services. Most common monolithic applications package all the server-side components into

a single executable unit based on the underlying programming language and framework.

For instance, a self-contained JAR file, a WAR (in the case of java application deployable

on an application server such as Tomcat), a directory hierarchy (e.g., Node.js). Following

the microservices architecture, each business logic and functional unit of an application is

presented as a service (most often with a REST API) tied to a narrow set of responsibilities.

The Microservices pattern has become a popular architectural style across different domains

mainly because it reduces the complexity of application development and makes it more

agile. Similarly, within the scope of mobility and transportation domain, and particularly the

development of the IF, a Microservices-based approach seems a suitable architectural style

as discussed in following.

• Firstly, in comparison to the monolithic style, microservices-based approaches are

more scalable in both the horizontal (inbound request expansion) and vertical

(add/update libraries) directions. Both of these factors are crucial non-functional

requirements in the construction of the IF given the potentially broad range of service

consumers (wide range of mobile applications such as ticketing, shopping, planning,

SPRINT-WP3-D-PDM-001-02 Page 19 of 50 17/05/2019

Contract No. H2020 – 826172

etc.) as well as stakeholders and service providers of different transportation modes

and sectors.

• Furthermore, due to the separation of the concerns and self-containment of each

component, a microservice-based application is easier to evolve and to be

maintained. It relieves the technology lock restriction of the monolithic application and

enables the developers to adopt a diversified set of underlying technologies for

programming and development for each microservice. This is a highly important point

to be taken into consideration since the IF is expected to be a cooperative framework

were heterogenous mobility sectors expose their data and services to other parties

either to build a common goal, or to provide separate operations. In both cases,

freedom for service providers to choose the underlying technology which best fits with

their own infrastructures could greatly encourage such cooperation.

• Another advantage of the functional decomposition of the IF is higher performance

and efficiency by matching the best technologies based on the characteristics and

requirements of specific functional units. For instance, in the context of the IF, as

shown in Figure 3, it could allow for a Historical Data store Service that utilizes time

series data technologies for managing historical data and a document-based

database technology to store, manage and query other types of artefacts.

Figure 3-Sketch of Microservices-based Architecture of
Interoperability Framework

SPRINT-WP3-D-PDM-001-02 Page 20 of 50 17/05/2019

Contract No. H2020 – 826172

• Moreover, the general idea behind microservices could be an inspiration for the

architecture of the internal components of the IF. By decomposing a component into

several sub-functions, we could increase their reusability. It also allows upgrading of

specific functions to the cutting-edge technologies which in turn enhances the

performance of the whole system. For example, in its current implementation, the

Converter developed in the ST4RT project is composed of several functional units or

steps namely, lifter, enricher, ontology loader, transformation rule manager and

lowerer. Each of these functional units could be implemented as a unique service

working in – predefined or possibly built at runtime – orchestration with one another.

A direct result of such implementation is that there could be multiple instances of

each functional unit developed by various service providers where one can choose

among them and compose its own version of the converter as depicted in Figure 4.

Enabling technologies for Microservices

As described above, the microservices-architecture is by design centered on loosely-

coupled implementations of cohesive sub-components (micro-services) [24]. The promises

of microservices would not be achieved without replication of one or multiple instances of

each microservice in distributed deployment units. Hence it is not surprising that container

technologies and microservices are closely intertwined.

Similar to Virtual Machines (VM) such as VMware [25] and VirtualBox [26], containers isolate

a portion of underlying system resources to consolidate multiple applications on a single

Figure 4 Containerization of Converters

SPRINT-WP3-D-PDM-001-02 Page 21 of 50 17/05/2019

Contract No. H2020 – 826172

server/host. A container is not a VM, but since the applications and usage of these

technologies are overlapping, they are often evaluated against one another [27]. Compared

to VMs, containers are lighter (with sizes in the order of magnitude of megabytes instead of

gigabytes as for VMs) and faster (seconds vs minutes). Firstly, because each VM equates

to a complete OS (guest OS) which in turns is heavyweight and very resource-consuming

software. Furthermore, the hypervisor itself (i.e., the component of VM frameworks in charge

of managing and allocating resources to the multiple guest OSs) consumes some amount

of host resources.

Each container, on the other hand, is like an independent process (or workload) which

resembles a whole production-like environment along with all the libraries and binaries

needed for the application be run all in a single OS. In other words, instead of virtualizing

the hardware to run multiple OSs, it virtualizes an OS to run multiple isolated workloads.

Although container technology has been around for a long time [28], it became popular with

the advent of Docker [29]. Docker extends the LXC, the Linux container [30] with kernel and

application-level APIs. The container engine in Docker, called Docker Daemon, is a service

running in the background of the Host OS and manages Docker Containers as an isolated

process. Utilizing the namespaces, it provides a totally separated view of the OS and its

resources such as process tree, network, and filesystems for each containerized application.

The building blocks of the Docker framework are docker files, that is script documents

including all the commands necessary to create a docker image. An image is a single pre-

built application – or stack of applications –which are ready to run. A Docker container is

created through the docker image. It packs an application and all dependencies required to

run it into a single software unit which is then portable and executable in any infrastructure

supporting Docker daemon.

A consequence of the availability of a portable, self-contained and ready-to-run instance of

an application is the possibility to duplicate such applications on a large scale. It potentially

solves the scalability problem and opens the door to agile software development. However,

the managing and monitoring of hundreds of containers, the allocation of resources to them

and the on-demand scaling up/down of their deployment is something beyond the concept

of containers itself. For these purposes a container orchestrator is required, which is a

system in charge of deployment, scaling and monitoring the containers. One of the most

successful examples of container cluster management is Kubernetes [31] which has been

open sourced by Google in 2014. Kubernetes takes the Docker image to create a

deployment unit for it. One can also specify the bare metal needed for each individual

deployment unit. The Kubernetes framework schedules the underlying resources to be used

by containers, automates all the processes needed for composing and deploying the

containers, and continuously monitors each instance to be well-operated and functioning.

Kubernetes together with containers (Docker specifically) not only made microservices

architectures popular, but they constitute the next generation of application development

and business management in particular by transforming the way cloud-based systems work

SPRINT-WP3-D-PDM-001-02 Page 22 of 50 17/05/2019

Contract No. H2020 – 826172

[28]. Section 3.2 provides more details regarding the role of these technologies in cloud-

based systems.

Modular Systems

Modular software development, as the name indicates, breaks complex software into

different modules and defines the software architecture through the dependencies and

relations among these modules. According to [32], a module is “a deployable, manageable,

natively reusable, composable, stateless unit of software that provides a concise interface

to consumers”. A modular software architecture is conceptually similar to the service-

oriented approach as they both focus on decompositions of systems into smaller,

manageable and self-contained components. However, the inherent difference of a module

with a service lies in the composability aspect. More specifically, a service is a logically

autonomous unit of software which might have its own application and could be directly

consumed by a client independent from other services. A module, on the other hand, is

meaningful when it is connected to other modules to compose a system. It is, however, a

reusable unit of software, in the sense that a particular module could be combined with

various modules to build different systems. Accordingly, dependency among the modules in

modular software architectures is an explicit and necessary element.

Modular system architectures are popular within the JAVA community, given that, starting

from JAVA 9, a native modular system has been added to this platform. OSGi [33], however,

is the best-known modular framework in JAVA, which is also inspired by the service-oriented

approach. In the OSGi approach an application is broken down into multiple – extensible

and downloadable – bundles such that the service layer could dynamically connect (discover

and bind) different bundles to create a coherent business logic. This architectural pattern

seems relevant to be considered as a candidate for the development of Converters.

In this context, we could also cite Apache Camel [34], which is an open source Java

framework best known as an integration tool that natively supports most of the Enterprise

Integration Patterns (EIP) [35]. EIP formalize the integration process by identifying different

integration patterns and defining a workflow for the most common business tasks in a

generic and code-agnostic manner. For example, Content-Based Router [36] is an EIP that

allows routing a message to the desired destination based on its content. Through the Camel

framework, one could build these patterns using a set of formal workflows, common

vocabulary and basic syntax, instead of architecting and coding from scratch the whole

system (which often becomes very complex).

SPRINT-WP3-D-PDM-001-02 Page 23 of 50 17/05/2019

Contract No. H2020 – 826172

In this vein, the core of a conversion process realized by the IF Converter can be seen as a

chain of Content Enrichers [37], which is an example of EIP. Once the input message has

been converted into triples, the Resource is the local in-memory RDF repository which is

then enriched and transformed. As depicted in Figure 5, each phase of the conversion

process could be modeled as one step of the Camel workflow sequence; starting from the

input message, each stage is composed of a set of processes and produces the output that

ultimately is routed to the successive endpoints.

An interesting aspect of Camel is the portability of the so-called endpoints and routes. They

could be deployed as stand-alone components, wrapped as OSGi modules or packaged as

containers. Moreover, each block of Camel could be implemented as REST API. These two

features make Camel a suitable tool for the development of Converters since it is compatible

with advantageous architectural patterns such as microservices, which constitute one of the

most interesting approaches for the realization of the IF.

3.2 CLOUD-BASED ARCHITECTURES

Cloud computing borrows and utilizes the core idea of the service-oriented approach and

has emerged as a promising paradigm to host and deliver services. The definition of cloud-

based systems encompasses a wide range of concepts, so that eventually everything (not

only functions, but also, for example, infrastructure) could be offered to the interested user

as a Service [38]. More precisely, the National Institute of Standards and Technology (NIST)

defines cloud computing as a model “enabling convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., networks, servers, storage,

Input -> RDF
conversion

Data
Enrichment

Ontology
loading

Transformation
rules

RDF -> output
conversion

Figure 5 Modularization of the Converter through Content Enricher Pattern

SPRINT-WP3-D-PDM-001-02 Page 24 of 50 17/05/2019

Contract No. H2020 – 826172

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction.” [39].

Cloud-based systems are often categorized into three models, namely Infrastructure,

Platform and Software as Service (IaaS, PaaS and SaaS), as represented in Figure 6.

Although these types of cloud computing are complementary with one another, each type

addresses different needs of software development and business management.

Accordingly, there is not one model that fits all situations, but each may cover a different

audience and application domain. In the following, we briefly overview each type and its

applicability and benefits in the different areas of transportation and mobility.

3.2.1 Infrastructure as a Service (IaaS)

The lower layer of the cloud system deals with deployment, running and controlling

infrastructural resources mainly through Virtual Machines. In other words, IaaS providers

offer hardware resources such as processing units, storage, and networking infrastructure

to their clients as a service and in an on-demand fashion. In comparison with physical data

centers/server allocation, IaaS presents substantial benefits for hosting any type of

applications including dynamic scalability, reduced cost and maintenance effort. Apparently,

the usage domain of the IaaS form of cloud computing is out of the scope of IF’s objectives

and responsibilities. However, it is an interesting deployment possibility to be taken into

account by various transportation and mobility service providers external to the IF itself.

Figure 6 – This figure depicts different cloud models, example and enabling
technologies. It also shows which cloud model is more suitable/applicable

for different S2R transportation actors.

SPRINT-WP3-D-PDM-001-02 Page 25 of 50 17/05/2019

Contract No. H2020 – 826172

3.2.2 Platform as a Service (PaaS)

Another form of cloud computing is called Platform as a Service, which offers a development

and deployment space for clients through which one can code, run and test an application.

In general, the PaaS layer is built on the IaaS layer and utilizes the underlying computation,

network and storage resources to support users in two directions. Firstly, PaaS offers a

suitable platform based on the programming language of the client’s choice plus libraries,

services and tools which support the whole life-cycle of application development. Secondly,

it is in charge of managing all the required aspects for deploying an application – usually on

a large scale – including cluster scheduling, load balancing, DNS automation, etc.

The former offers the so-called in-house development that sets up a full-featured and

browser-based coding/compiling framework, that relieves developers to build up and

manage the development environment. The latter then supports the automatic packaging,

deployment and scaling up/down of the application. In this direction, containers (see Section

3.1.2) are among the key enabling technologies for the materialization of the PaaS model.

In the early days of cloud computing, the two above-mentioned features of PaaS were

closely intertwined. Furthermore, the client had limited control over the underlying

infrastructure since it was owned by the PaaS provider. For instance, in Heroku [40] (among

the best-known PaaS provider) an application could be deployed only on the Heroku’s AWS

infrastructure using Dyno (a lightweight Linux container).

Though the aforementioned scenario is still a popular way of implementing the PaaS model,

the new trend in software architectures such as devOps and microservices is to shift the

PaaS implementation towards more loosely coupled approaches. Specifically, the

emergence of technologies such as Docker [29]and Kubernetes [31] has decoupled the

container management and orchestration tasks from the PaaS layer. In other words, the

Figure 7 Runtime Environment for the IF

SPRINT-WP3-D-PDM-001-02 Page 26 of 50 17/05/2019

Contract No. H2020 – 826172

base resources are no longer restricted to those offered by the PaaS provider; instead, the

client can choose the desired infrastructure (i.e., the cloud provider) and has full control over

it.

This new trend of PaaS implementation, which is mainly focused on the provision of

containers and their orchestration and management, seems a suitable approach for service

deployment in the IF. As depicted in Figure 7, one way of reaching the goal of the IF of

fostering collaboration and interoperability among transportation actors could be to provide

an “executable environment” that lets clients seamlessly deploy the desired service.

Following this approach, the IF could be linked to some cluster of infrastructures and take

care of the required configuration and dependencies, to run one or a composition of multiple

services and make them ready to be consumed by the client.

3.2.3 Software as a Service (SaaS)

The higher layer of cloud-based architectures is Software as a Service. Compared to IaaS

and PaaS, it is the more tangible model for end-users since it deals with the actual

application and fosters a new form of application utilization. SaaS refers to a model of

software which is managed remotely via distributed and virtual resources and is delivered

to the user in an on-demand fashion. Accordingly, end-users do not purchase and install

software on their own machines, but utilize it – usually – on a subscription basis and have

access to it via the internet. From the user perspective, this form of obtaining the right to use

the software is advantageous for many reasons. It reduces the initial investment to buy a

license, saves money as soon as one stops using the software and increases the safety of

data since everything is stored on the cloud rather than on personal PCs, which are more

vulnerable to damage and various security hazards. Similar to other domains, the

transportation community has moved in the direction of this model. For example, the concept

of Mobility as a Service [41], which is an incarnation of the SaaS model, is becoming a more

and more popular and widespread approach. Finally, in this context, since the IF is not

directly used by ordinary end-users, it might not be the main audience for the SaaS model.

On the other hand, the SaaS pattern seems a suitable approach for delivering the results of

IP4 projects.

3.3 PEER-2-PEER ARCHITECTURES

Peer-to-peer (P2P) software architectures were introduced as an alternative to centralized

software infrastructures, and in particular to the client-server model. In this architectural

style, there is no distinction between server nodes and client nodes, and each node logically

acts as both [42]. Accordingly, the requirement for a central component to maintain and

manage the knowledge about the whole system is reduced, especially in an unstructured

P2P system. Each node has its local and partial view of the system, and could

autonomously initiate a connection to other nodes.

SPRINT-WP3-D-PDM-001-02 Page 27 of 50 17/05/2019

Contract No. H2020 – 826172

P2P became very popular both in academia and industry during the 2000s, leading to a

number of successes in a wide range of domains, such as for example file sharing [43]. The

P2P model soon found its way in web services field. In particular, structured P2P systems,

such as Chord [44] , CAN [45], Pastry [46], and Napster [47] proved themselves as a suitable

mechanism for distributed web service discovery [48].

Although the popularity and number of implementations of P2P system has decreased in

the last decade – especially in favor of cloud computing approaches –, successful industrial

implantations of P2P systems such as Skype shows it still could be advantageous

approaches in certain situations. In addition, some researches aim at combining P2P and

cloud approaches [49], [50], [51], for example to exploit P2P technologies for the distributed

management of cloud resources to overcome the shortcomings of centralized cloud

management approaches.

Similarly, the centralized management of the IF may jeopardize its overall scalability and

robustness. Making a one (logical) node the single coordinator of the whole system would

become a performance bottleneck as the system grows, and it would suffer from the single

point of failure problem. To avoid this, a P2P implementation of the IF that relied on a

federated architecture (such as the one depicted in Figure 8) would be beneficial under a

number of aspects. Indeed, in a federated approach, no single entity would own the IF and,

as it is common in P2P systems, the system would be functioning and growing as a

grassroots effort of the whole community. Accordingly, it allocates different tasks to multiple

nodes, which exchange with one another only the portion of data which is of interest for the

recipient. Hence, in comparison to the centralized architecture (which can be only logically

Figure 8 Federated IF

SPRINT-WP3-D-PDM-001-02 Page 28 of 50 17/05/2019

Contract No. H2020 – 826172

centralized as in cloud-based systems, or both logically and physically centralized such as

in client-server approaches) where all data must be transferred to a single unit responsible

for all the processing/storage tasks, a P2P approach potentially increases the performance

and reduces the storage, processing and communication costs.

Furthermore, the cloud is a costly solution from the economic point of view. P2P however,

fosters the idea of “volunteer Computing” [52], where each transportation actor would share

its infrastructure to provide the storage and processing required by IF, which, in turn, makes

the interoperability among actors in the community possible. Finally, this deployment

scenario presumes the locality of data, which is kept where – geographically and

administratively – it is originated and/or belongs to, and only distributes the meta-data and

service descriptions. All the requests to access data/services would be then redirected to

the responsible peer and the client could directly interact with the source peer.

Figure 8 sketches the architecture of a federated IF. A transportation actor (e.g., IP4

application, TSP) could then participate and utilize the IF network, by locally installing an

instance of the IF. The power and storage capacity of its machine then becomes part of the

overlay network. Following common practices, there could be different versions of IF

instances, both light and full. The client would mainly participate in the distributed service

discovery process, while the service provider would bear the responsibility of data storage.

In this scenario the IF acts as a distributed registry, and its responsibility reduces to

discovering the desired service/data for the user. A discovery result is composed of a service

description and the endpoint to be called. Deployment and operation of discovered services

are then on the premises of the service provider.

SPRINT-WP3-D-PDM-001-02 Page 29 of 50 17/05/2019

Contract No. H2020 – 826172

4. SURVEY OF BEST PRACTICES TO ADDRESS

INTEROPERABILITY IN DISTRIBUTED AND
HETEROGENEOUS SYSTEMS

This section analyzes how interoperability issues have been tackled in other domains. In

particular, it looks at the Internet of Things (Section 4.1 and Section 4.2) and cloud (Section

4.3) domains.

4.1 THE BIOTOPE PROJECT

 “The Internet of Things (IoT) brings opportunities to create new services and products, reducing costs

for societies, and changing how services are sold and consumed. A critical obstacle to further IoT

innovation is the “vertical silos” that shape today’s IoT landscape. These silos impede the creation of

cross-industry, cross-platform and cross-organisational services due to their lack of interoperability and

openness. The bIoTope project lays the foundation for creating open innovation ecosystems by providing

a platform that enables companies to easily create new IoT systems and to rapidly harness available

information using advanced Systems-of-Systems (SoS) capabilities for Connected Smart Objects – with

minimal investment.” [53]

Similar to the transportation sector, IoT is a heterogeneous domain composed of millions of

devices interacting with each other through heterogenous standards, communication

protocols, and vendor-specific APIs. IoT ecosystems can be spread over vast geographical

boundaries and comprise a wide range of stakeholders. The bIoTope project aimed to tackle

the interoperability problem in IoT systems. The work carried out in the bIoTope project

toward the construction of a federated IoT system could be an inspiration for the SPRINT

project.

The strategy followed by the bIoTope project is a top-down one, where interoperable

communications and interactions are achieved by encouraging the community to use certain

(open) standards. From an architectural point of view [54], the project has employed a

federated architecture where the service and data providers register their services/data in a

distributed repository (the so-called O-MI node). Subsequently, a consumer could send a

discovery request to an O-MI node to find out the desired data and service as well as to

discover other O-MI nodes. The communication with repository nodes is achieved via HTTP

and web Sockets, and the unified interpretation of such messages is guaranteed by the strict

assumption that actors of the system are using specific standards. In other words, the

semantic interoperability is hardcoded in the system. Finally, access to the desired service

is managed through peer-to-peer interaction [55].

Another aspect of the bIoTope project that could be of interest for SPRINT is their solution

for the management of access control requirements. More precisely, the secure access to

the data in their system is managed through a token-based system where the bIoTope

gateway generates and verifies such token on behalf of the service provider. It hence

requires that the data owner relinquishes full access to the marketplace to manage

authorization and privacy aspects. The project has foreseen some mechanisms for the data

SPRINT-WP3-D-PDM-001-02 Page 30 of 50 17/05/2019

Contract No. H2020 – 826172

owners to specify how and under which condition different access permissions must be

assigned to the registered users [56].

4.2 OPENIOT - THE OPEN SOURCE INTERNET OF THINGS

 “The OpenIoT middleware infrastructure will support flexible configuration and deployment of algorithms

for collection, and filtering information streams stemming from the internet-connected objects, while at

the same time generating and processing important business/applications events. OpenIoT is perceived

as a natural extension to cloud computing implementations, which will allow access to additional and

increasingly important IoT based resources and capabilities. In particular, OpenIoT will research and

provide the means for formulating and managing environments comprising IoT resources, which can

deliver on-demand utility IoT services such as sensing as a service” [57].

From the architectural point of view, OpenIoT is a middleware-based approach enabling the

semantic unification of diverse IoT applications in the cloud. At the lowest level, the sensor

middleware collects sensed data from physical and virtual sensors and distributed gateways.

Data eventually are cast to the cloud layer (Linked Stream Middleware, LSM) where users

could initiate discovery request over data. Furthermore, it provides different components

and interfaces for semi-automatic service request definition and presentation [58].

To achieve full interoperability, OpenIoT has defined an ontology as an extension of

Semantic Sensor Network (SSN) [59] that is one of the best-known ontologies in the IoT

domain developed by the World Wide Web Consortium (W3C). The ontology is a single

OWL file which is used for automatic documentation and annotation. LSM takes the raw data

as input and converts them to semantically-annotated data in RDF format as output. In addition,

the cloud layer stores metadata regarding the sensors and their functions. LSM then

exposes SPARQL endpoints to enable the exploration of these semantically annotated data.

One of the interesting approaches in OpenIoT is its implementation of continuous queries.

For this mode of querying, the SPARQL endpoints of the LSM provides necessary interfaces

for users to define their queries. Such a query would be re-triggered as soon as new data

arrives in the system and the result would be sent back to the subscriber [60].

However, one limitation of OpenIoT is its authentication and authorization management,

which is handled in a centralized manner. Users are requested to register to the system

providing a name and password. The Central Authentication Service (CAS) then provides

the authenticated user with a token which is valid for a certain time. Such a token is

generated based on the permission conditions defined by the service provider beforehand.

Permissions are textual values that define actions or behaviors and are defined per service.

4.3 INTEROPERABILITY IN CLOUD FRAMEWORKS

Another computing domain where interoperability has become a major challenge is cloud

computing. Similar to our case, cloud computing is composed of distributed resources

(physical, networking and services) working together to realize the promise of cloud

computing, that is a global market of collaborative services [61]. The interoperability problem

in the cloud stems from the intense competition among the giant cloud providers such as

SPRINT-WP3-D-PDM-001-02 Page 31 of 50 17/05/2019

Contract No. H2020 – 826172

Google, Amazon and Salesforce, which makes them reluctant to converge towards unified

standards. Cloud interoperability, in general, is “the ability to write code that works with more

than one Cloud provider simultaneously, regardless of the differences between the

providers” and semantic interoperability is concerned with how different cloud systems

express and understand the same information [61].

The work presented in [61] proposed an open Reference Architecture for Semantically

Interoperable Clouds (RASIC). RASIC acts as a mediator between cloud providers with the

aim to resolve the semantic conflicts. However, their main contribution is the development

of a model for a generic API through which cloud consumers can specify their requirements.

The authors discuss how current cloud providers are offering analogous services with similar

actions and properties, but through heterogenous APIs, names and structures. They

suggest that ontologies and a unified modeling approach could be employed to overcome

such interoperability issues. In particular, the authors have developed an ontology and

vocabulary for the semantic annotation of both services and resources in the cloud; then,

through their semantic engine, a cloud provider could formally (using RDF and OWL) add

the mapping between its data model and the reference architecture’s models. Using these

mappings and suitable reasoning approaches RASIC could find semantically matched

concepts and resolve any semantic conflicts at runtime.

In this context, another project of interest is a semantic interoperability framework for SaaS

systems in cloud computing environments [62]. The authors discuss that while syntactic

interoperability has been achieved in the cloud, it severely lacks semantic interoperability.

To overcome this issue, they proposed a broker-based approach which stands between

cloud consumers and providers and takes care of the operations needed to ensure

interoperability. Following the reference architecture, a federation of the clouds is created

so that consumers could not perceive the distribution and fragmentation of the underlying

cloud, but worked with the broker as if it were a single cloud computing system. Each cloud

provider is responsible to register its services, as well as the service agreements between

the provider and the consumers. Subsequently, consumers (of different cloud providers)

interact with to the broker as a single gateway to discover, deploy and manage any services.

In addition, the broker plays a central role to provide semantic interoperability. The cloud

providers submit the syntactical description of their services through WSDL specifications

to the broker. The semantic interoperability layer of the broker then creates the semantic

description of the service explaining in a unified manner what it does and what are the

requirements, limitations and service quality. Firstly, the WSDL2OWL-S component

generates such semantic description out of the WSDL and then, using a special-purpose

semantic editor, one can add any additional information to it. Another component of the

broker is the ontology repository composed of an ontology editor to create and manage

different ontologies to represent the mapping knowledge space, as well as different types of

mappings that a consumer might need.

SPRINT-WP3-D-PDM-001-02 Page 32 of 50 17/05/2019

Contract No. H2020 – 826172

5. RESULTS OF THE ASSESSMENT OF THE FUNCTIONS

IMPLEMENTED IN COMPANION PROJECTS

This section provides an assessment of the functions related to the IF implemented in past

S2R-related projects. We focused on the outcomes of the projects for which we were able

to get access to the developed components, and in particular those of the IT2Rail [1] and

ST4RT [2] projects. In particular, Section 5.1 analyzes the services developed in the IT2Rail

project, and Section 5.2 assesses the converter technology developed in the ST4RT project.

5.1 IT2RAIL PROJECT

The IF technical demonstrator implemented within the IT2RAIL project executes in an

environment that is equipped with:

• an installation of the open source Ontotext GraphDB semantic graph database, which

implements the data layer

• an installation of the open source Apache Tomcat web application server, which hosts

interoperability services

• an installation of the open source Apache WSO2 Carbon middleware, which

implements the Asset Manager

all using the Java Development Kit 1.8 and runtime.

Figure 9, Figure 10 and Figure 11 show the details of the three installations:

Figure 9 - Apache Tomcat web application server

SPRINT-WP3-D-PDM-001-02 Page 33 of 50 17/05/2019

Contract No. H2020 – 826172

Figure 10 - Apache WSO2 Carbon Installation (Asset Manager)

SPRINT-WP3-D-PDM-001-02 Page 34 of 50 17/05/2019

Contract No. H2020 – 826172

Figure 11 - Ontotext GraphDB Semantic Graph database

The interoperability services of the IF are implemented as Web Archive (WAR) files

deployed on the Apache Tomcat web application server. Figure 12 shows the deployed

services on the Apache Tomcat management console.

Figure 12 – IT2Rail interoperability framework services deployment on Tomcat container

For both unit and integration testing of the IT2Rail pilot demonstration the SoapUI tool has

been used extensively to conduct both manual and automated testing campaigns.

SPRINT-WP3-D-PDM-001-02 Page 35 of 50 17/05/2019

Contract No. H2020 – 826172

Additionally, logging instructions have been inserted in the code using the Apache Log4j

framework controlled by configuration parameters stored in a logging configuration file.

Figure 13 shows a snapshot of the SoapUI tool configured for testing of the main

Interoperability Framework services.

Figure 13 - SoapUI configuration for testing campaign

The figure expands, for illustration purposes, the Travel Expert Broker service with a set of

test requests for the acquireOffers operation (on the left), and the request and response

messages obtained for the AMS Prague Berlin test instance.

Similar test requests have been prepared and executed for each of the additional services

listed under “projects” in the leftmost panel of the SoapUI screen.

The following external Travel Expert services have been annotated for use in the technical

demonstration:

1. SNCF (mainline French Rail) PAO services

a. <endpoint>/it2r/sales/searchSolutions

2. AMS (long distance Coach operators, Czech Republic) eshopcv services

a. <endpoint>/v1/Connection

b. <endpoint>/v1/ConnectionInfo

SPRINT-WP3-D-PDM-001-02 Page 36 of 50 17/05/2019

Contract No. H2020 – 826172

3. Trenitalia (mainline Italian Rail) PICO Services

a. <endpoint>/Sale/SaleProcess/SolutionEngine/TravelSolution/search

b. <endpoint>/Sale/SaleProcess/SaleCoordinator/searchBase

4. RENFE (mainline Spanish Rail), Indra Rail services

a. <endpoint>/Rail_TSP/NewTSP2/GetItineraries

b. <endpoint>/Rail_TSP/NewTSP2/Availability

c. <endpoint>/Rail_TSP/NewTSP2/Trains

5. KGOVV (Austrian Public Transport), HaCon services

a. <endpoint>/openapi/vao/restproxy/trip

6. TMB (Madrid, Barcelona Public Transport) Indra Rail services

a. <endpoint>/HMI2_APP/service/otp/getRoute

7. VBB (Belin / Brandenburg Public Transport), HaCon services

a. <endpoint>/restproxy/trip

The following external Booking Engine services have been annotated for use in the technical

demonstration:

1. SNCF (main line Rail operator), PAO services

a. <endpoint>/it2r/sales/bookProposals

b. <endpoint>/it2r/sales/createSalesContract

c. <endpoint>/it2r/sales/cancelBooking

d. <endpoint>/it2r/sales/cancelTickets

2. AMS (long distance coach services), eshopcv services

a. <endpoint>/v1/SeatBlock/

b. <endpoint>/v1/Ticket/

3. Trenitalia (main line Rail operator), PICO Services

a. <endpoint>/Sale/SolutionEngine/CatalogReservation

b. <endpoint>/Sale/SaleProcess/OrderProcess

http://lastrelease.pao.vsct.fr/it2r/sales/bookProposals
http://lastrelease.pao.vsct.fr/it2r/sales/createSalesContract
http://lastrelease.pao.vsct.fr/it2r/sales/cancelBooking
http://lastrelease.pao.vsct.fr/it2r/sales/cancelTickets
https://eshopcv.amsbus.cz:8443/v1/SeatBlock/
https://eshopcv.amsbus.cz:8443/v1/Ticket/

SPRINT-WP3-D-PDM-001-02 Page 37 of 50 17/05/2019

Contract No. H2020 – 826172

4. RENFE (mainline Rail operator) Indra Rail services

a. <endpoint>/Rail_TSP/NewTSP2/LockInventory

b. <endpoint>/Rail_TSP/NewTSP2/IssueToken

c. <endpopint>/Rail_TSP/NewTSP2/BookingInfo

d. <endpoint>/Rail_TSP/NewTSP2/ReleaseInventory

5. VBB (Public Transport Berlin/Brandenburg) HaCon services

a. <endpoint>/shopping/ShoppingMessages/VBB/purchaseRequest

b. <endpoint>/ shopping/ShoppingMessages/VBB/retrieveRequest

Test suites defined in the SoapUI tool have been created to exercise the interoperability

framework with the external Travel Expert and Booking Engine.

Figure 14 - Travel Expert Broker automated test

In the example shown in Figure 14, the “Base Corridor” test suite displayed on the left pane

was performed with all test steps passed (in green), except one (in red) for an AMS Prague

to Wien itinerary. The failure consisted in the remote AMS Travel Expert returning a “No

connection found” message, indicating that no solutions were available at the Travel Service

provider for the specified itinerary and date.

SPRINT-WP3-D-PDM-001-02 Page 38 of 50 17/05/2019

Contract No. H2020 – 826172

5.1.1 IT2Rail implementation and deployment main features

One of the most important requirements in the design of the IF is its ability to be extensible

and to be deployed in multiple instances on a variety of different run time environments.

Extensibility permits the development and deployment of new services – e.g., resolvers –

by means of appropriate configuration parameters, deployment of multiple instances

provides a measure of horizontal scalability and high availability, and deployment on multiple

runtime environments allows a degree of transparency to an organization with respect to

other tooling, such as logging, security, configuration, or operations management (which it

may already be using on a local or cloud-based system platform).

In order to support extensibility, a common Semantic Graph Manager component was

developed grouping all methods required to serialize/deserialize java classes to/from RDF

graphs, and to persist and query such graphs in the IF’s data layer, namely its triple store.

This component uses dependency injection, based on configuration files, to obtain specific

behavior, namely, to select the specific data sources in the data layer, the provider of

template SPARQL queries to be used on the data sources, and the concrete

implementations of an abstract interface to converters, which are also injected from the

Asset Manager repository. A resolver is essentially obtained by the specification of this

configuration, the writing of appropriate SPARQL query templates and, where required, the

development and publication on the Asset Manager of specific converters.

The ability to deploy multiple instances of services on different runtime environments is

obtained through a specific packaging of the software as Web Application Resource (WAR)

and Java Archive (JAR) files, using Apache Maven dependency management.

Figure 15 - IT2Rail services packaging

Figure 15 shows, in green the WAR files implementing IF Resolver services, and in orange

JAR files containing java code and other resources, such as configuration files, that

SPRINT-WP3-D-PDM-001-02 Page 39 of 50 17/05/2019

Contract No. H2020 – 826172

implement “internal” interfaces and handle lower-level tasks for the packaged resolvers.

WAR files typically include the dependent JARs and are therefore self-contained: this allows

them to be deployed simultaneously on multiple web application servers for horizontal

scalability.

The IT2RAIL design, implementation and packaging is described in more detail in the

project’s “D1.8 Proof-of-concept Packaged resolvers Full Features” deliverable2.

5.1.2 IT2RAIL Findings and Limitations

The IT2RAIL pilot demonstration achieved its stated functional objectives. It also validated

its fundamental design decisions, particularly the systematic usage of dependency injection

controlled by configuration, the ability to use concrete implementations of abstract

converters obtained from the Asset Manager at runtime, and the packaging into self-

contained WARs built under Apache Maven dependency management using underlying

common JARs.

It also stressed the need for better tools to support the ontology annotation process, which

is currently manual and labor-intensive. While the handling of security protocols was

delegated by design to the specific runtime environment, a serious security vulnerability was

identified, but not solved in the course of the project, in the runtime injection of converters

from the Asset Manager, i.e. for preventing the injection of malicious or defective

implementations in the execution of the services. This requires the development of security

mechanisms at the Asset Manager and/or the Semantic Graph Management component,

and should additionally be the object of appropriate control procedure in the governance

process.

5.2 ST4RT PROJECT

The ST4RT project [2] has delivered semantic conversion technology packaged as a

“Converter” software artifact enabling bi-directional mapping of FSM and TAP-TSI

messages in a specific use case, i.e. booking of a Berth on Trenitalia night train traveling

from Roma Termini to Palermo Centrale stations. This converter has been developed

explicitly as an extension of the IF initially delivered by project IT2Rail, in which the extension

consisted in the handling of specific FSM and TAP-TSI messages.

The ST4RT Converter transforms a Java object to an RDF graph. The ST4RT project

transformation is based on manually annotated Java classes (created through the JAXB

framework) which are generated from XSD schemas. Annotations define which elements

are processed and how.

The ST4RT Converter does not use physical data storage. All data are processed in

memory, except the master data in the OWL file which contains mapping between different

2 http://www.it2rail.eu/download.aspx?id=a1b4380d-127a-4e03-9bb5-3798d3ef3a5d

SPRINT-WP3-D-PDM-001-02 Page 40 of 50 17/05/2019

Contract No. H2020 – 826172

codings of the same concept. The Apache Jena framework is already used for reading

masterdata from OWL files. Indeed, the use of a datastore/database could have a positive

impact on the performance of the converter. The central storage would allow a remote data

management and it could lead to better performance in case of complicated conversions.

Another possible positive impact of using a central storage could be in the keeping of

necessary data during stateful communication, to avoid losing important data which are not

required by the second format.

SPARQL is used for building and reshaping the RDF Graph in the ST4RT project.

The ST4RT converter is an independent component. There is a REST interface

implemented so the ST4RT converter can be run on an Apache Tomcat server separate

from the software which needs to use conversion. The ST4RT converter can be also

integrated into existing software without using the REST interface. The ST4RT converter

currently does not communicate with other systems –everything it needs is contained inside

local packages – though in the future different solutions might be explored.

The implementation of this new converter has been tested in the following scenarios:

a. TAP-TSI ReservationRequest to FSM PreBookingRequest

b. TAP-TSI ReservationReply to FSM PreBookingResponse

c. FSM PreBookingRequest to TAP-TSI ReservationRequest

d. FSM PreBookingResponse to TAP-TSI ReservationReply

e. TAP-TSI ReservationRequest / Reply transaction to an FSM Simulator

f. FSM PreBookingRequest/Response transaction to a TAP-TSI Processor

g. FSM Offering process to IT2Rail Travel Expert Broker for shopping

Since the ST4RT project was explicitly targeted at adding a new converter to the IT2Rail

initial implementation of the Interoperability Framework, its deployment and testing uses the

same environment – Apache Tomcat web application server, Apache WSO2 Carbon Asset

Manager, and OntoText GraphDB triple store – described above.

The ST4RT and IT2Rail artifacts are packaged as web archive (WAR) files that implement

the IF web services. Figure 16 shows the deployed services from both projects in the Apache

Tomcat management console.

SPRINT-WP3-D-PDM-001-02 Page 41 of 50 17/05/2019

Contract No. H2020 – 826172

Figure 16 - Deployed integrated IT2Rail ST4RT converter services

Items highlighted in red in the leftmost column are specific artifacts created for the technical

demonstrator of the ST4RT converter in the IT2Rail interoperability framework:

1. /fsm-booking-engine uses the ST4RT converter to generate a full FSM

PreBookRequest / FSM PreBookResponse session using a TAP-TSI processor

2. /it2rail-fsm-offering-broker-1.0 uses the IT2Rail rdf framework upgraded with a

merging of annotation features developed by the ST4RT project to support the FSM

Offering process with the SNCF, Trenitalia, AMS, VBB and IndraRail Travel experts

used in the IT2Rail proect

3. /st4rt-convertor-service demonstrates the ST4RT converter in the federated graph

environment

4. /tap-tsi-booking-engine generates a full TAP-TSI ReservationRequest /

ReservationReply session using the remote FSM Simulator provided by OLTIS Group

5. /tap-tsi-processor creates a TAP-TSI Reservation Reply in response to a TAP-TSI

Reservation request and is used in conjunction with the /fsm-booking-engine service

described in point 1 above

It2Rail repository sparql endpoint

SPRINT-WP3-D-PDM-001-02 Page 42 of 50 17/05/2019

Contract No. H2020 – 826172

Since test scenarios are exposed as web services, the test campaign is performed with the

use of the open-source SoapUI web service testing application.

Figure 17 shows the SoapUI set up for IF testing.

Figure 17 - SoapUI projects for Interoperability Framework testing

The four expanded projects on the leftmost column show, marked by a green icon, the four

specific web service bindings corresponding to the four test scenarios implemented in the

demonstrator.

In addition, two other “tools” are used in the test campaign: an FSM Simulator developed by

OLTIS Group and deployed on their servers, and a TAP-TSI Processor developed by

Trenitalia to provide actual TAP-TSI Reservation replies TAP-TSI Reservation request for

the specific ST4RT use case.

Detailed outcomes from the campaign test are described in ST4RT project deliverable “D5.5

Report on the results of the IT2Rail semantic broker demonstration scenario”3.

5.2.1 ST4RT project implementation and design features

The ST4RT demonstrator was explicitly developed as an extension of the IT2RAIL project

as dedicated specific converter to support bi-directional FSM/TAP-TSI exchanges in a

booking scenario. As such, its main design requirement was the ability to be injected at

runtime in the Semantic Graph Manager. However, an additional requirement was added to

allow it to be run within the HEROS middleware provided by project partner HitRail. Since

the HEROS middleware has no access to IF’s Asset Manager or the Triple Store in the Data

layer, the Semantic Graph Manager’s configuration capabilities were exploited to have local

files play the role of Ontology Repository and Data layer. When the ST4RT converter runs

3 Cfr. http://www.st4rt.eu/download.aspx?id=27b9e8c3-1cc3-48c0-9d76-6b4a6e02ac51

SPRINT-WP3-D-PDM-001-02 Page 43 of 50 17/05/2019

Contract No. H2020 – 826172

in this configuration, it is statically bound to the Semantic Graph Manager to access the

ontology and the local RDF graphs. The ST4RT converter can therefore be run both in a

stand-alone mode, using the Semantic Graph Manager as an underlying utility, or within the

Semantic Graph Manager when running in the IF’s context, the modes being controlled by

the appropriate configuration.

5.2.2 ST4RT Findings and Limitations

The ST4RT pilot demonstrator also achieved its stated objectives, and in fact a second

demonstration scenario was added to test the Converter in both the HEROS and IF

deployment environments. From an architectural standpoint its main finding is that it is

indeed possible to develop specialized converters that run in the IF without changes to the

framework itself. These converters can therefore be packaged as independent artifacts to

be injected as required.

However, due to the nature of the TAP-TSI specification, the annotation model had to be

extended in order to perform complex semantic inferences through SPARQL queries. While

this is a powerful extension the capabilities of semantic conversion, it adds considerably to

the manual effort of the annotation process and in its debugging. It is necessary therefore

to develop appropriate productivity tools to support it.

SPRINT-WP3-D-PDM-001-02 Page 44 of 50 17/05/2019

Contract No. H2020 – 826172

6. DISCUSSION

This document aimed at overviewing and analyzing the current state of the art and best

practices covering various architectural aspects of interoperability. Section 2 introduced the

current generic architecture of the IF and its main elements (which will be further elaborated

in the next steps of the SPRINT project). It also briefly described the motivations behind the

design, and it overviewed the functions provided by the components and the relevant

technologies and tools for their implementation. Table 1 summarizes the different

components of the IF versus their respective possible technologies, tools and patterns.

Table 1 Summary of tools, techniques and technologies suitable for different components
of IF

Tools Patterns and

Technologies

Interoperability Framework Functions

Data Layer Asset Discovery

and Registry

Life Cycle

Management

Distributed

SPARQL endpoint

Converter Resolver

BPMN

Camel

Camunda

Containers:

Docker

Graph DB:

Neo4j, Neptune

HATEOS:

HAL, Hydra, Siren

Linked data

Mash-Up

OSGi

Orchestration:

Kubernetes, Azure,

Google Container

Semantic Annotation:

WSDL-S, SAWSDL,

WSML, SA-REST,

hREST

SPRINT-WP3-D-PDM-001-02 Page 45 of 50 17/05/2019

Contract No. H2020 – 826172

Triple Store data bases

RDF4J Jena [2], Jena

Section 3 studied and analyzed architectural patterns, especially for the construction of

distributed systems. It presented the benefits of each pattern for the development of the IF

itself and of the individual components – if applicable. In addition, it identified the cutting-

edge technologies currently employed for the development of such patterns are (which are

listed in Table 1)

Table 2 Comparison of different Deployment Architectures

Evaluation Dimensions Deployment Architecture

 Middleware Microservices Modular P2P cloud

Maintenance over time.

Cost

Horizontal Scalability.

Vertical Scalability.

Resilience to Failure.

Technology Independency Across
Stakeholders.

Loose Coupling

Agile Development

Security

Evidently, each architectural style has its own advantages and shortcomings. To select one

(or more) approach and balance the tradeoff between its pros and cons, we identified the

aspects which are most relevant and pivotal in our case and assess the different patterns

against them. Table 2 summarizes the discussions and comparisons of the different

architectural style against the selected evaluation dimensions presented in each

corresponding section. The green and red colors, respectively, indicate the most and least

suitable patterns – if any – with respect to the others.

According to our analysis, modular service-oriented approaches – in general – and

microservices – specifically – seem the more promising approaches. The focus of

microservices-based architectures is on the decomposition of software into smaller, but

SPRINT-WP3-D-PDM-001-02 Page 46 of 50 17/05/2019

Contract No. H2020 – 826172

autonomous, components dedicated to a narrow set of functions. The great degree of

independence of the various components fosters an agile software development and leads

to many advantages including higher scalability and efficiency. The former is achieved due

to the reusability of such components. The latter, instead, is a result of selective scalability,

which is the ability to scale in/out a specific microservice based on demand (instead of

duplicating the whole software) and greatly facilitates both horizontal and vertical scalability.

In addition, the overall performance of the system could be greatly enhanced thanks to the

possibility of technology optimization for each component. As discussed in Section 3.1.2,

the interaction among various components is achieved in a technology-agnostic manner and

through standard API (usually RESTful). Accordingly, the best-suited tools, technology, and

platform to develop each microservice could be adopted solely based on the characteristics

and requirements of that microservice, regardless of the technology that is used for rest of

the system.

However, the most important result we reached in our study was that there is not a one-size-

fits-all solution. A multidisciplinary approach is needed in order to address various

requirements and use-cases. For instance, consider the scenario in which the IF offers a

runtime execution environment for – automatic – deployment of a service on-the-fly, versus

the simplest use case where the IF mainly plays the role of service registry. In the latter

case, it is the responsibility of the TSP to register its service following the proposed

vocabulary, annotation and service description language supported by the Asset Manager.

In the service discovery phase, the Asset Manager returns to the client the endpoint of the

service, which is deployed, run, and maintained at the TSP premises. Presumably, it would

be very difficult to address the first scenario without taking advantage of cloud computing as

well. In particular, in Section 3.2.2 we discussed in detail how the combination of could

infrastructure and microservice-based technologies could address such a requirement.

Section 4 overviewed solutions for tackling the interoperability problem in other domains.

More precisely, we focused on IoT and cloud-based frameworks since – similar to our case

– both deal with geographically and administratively distributed ecosystem characterized by

heterogeneous actors and standards. Furthermore, for the sake of completeness, we

analyzed projects that cover various software architectures. This allowed us to analyze and

identify the pros and cons of different architectural styles in practice. In particular, modular

and service-oriented approaches seemed to be the key to solving the interoperability

problem. In addition, the survey greatly helped us to recognize different requirements, critical

aspects and common practices for the development of an interoperability framework. For

instance, all solutions highlight the necessity and significance of semantic-based approach,

and encourage utilization of a shared ontology in order to achieve semantic interoperability

in addition to syntactical interoperability.

Finally, Section 5, assessed the results of previous S2R projects that are related to the goals

of the SPRINT project. The assessment showed the need to strengthen the security features

of the Asset Manager, to avoid for example potential attacks in which malicious code is

SPRINT-WP3-D-PDM-001-02 Page 47 of 50 17/05/2019

Contract No. H2020 – 826172

injected in the services offered. It also highlighted the need to improve and ease the

annotation process and mechanisms developed in the ST4RT project.

SPRINT-WP3-D-PDM-001-02 Page 48 of 50 17/05/2019

Contract No. H2020 – 826172

REFERENCES

[1] IT2Rail Consortium, “www.it2rail.eu,” [Online].

[2] ST4RT Consortium, “www.st4rt.eu,” [Online].

[3] ISO/IEC, 10746-3:2009 Information technology -- Open distributed processing -- Reference

model: Architecture, 2019.

[4] B. Hanssens, “RDF4J,” 2019. [Online]. Available: http://rdf4j.org/.

[5] “Apache Jena,” [Online]. Available: http://jena.apache.org/index.html.

[6] “neo4j,” [Online]. Available: https://neo4j.com/.

[7] “Amazon Neptune,” [Online]. Available: https://aws.amazon.com/neptune/.

[8] C. Bizer, T. Heath and T. Berners-Lee, “Linked data: The story so far.,” n Semantic services,

interoperability and web applications: emerging concepts, pp. 205-227, 2011.

[9] E. Prud, A. Seaborne and others, “Sparql query language for rdf,” 2006.

[10] “BPMN,” [Online]. Available: http://www.bpmn.org/.

[11] “Camunda,” [Online]. Available: https://camunda.com/.

[12] I. S. A. and others, DCAT application profile for data portals in Europe, 2015.

[13] M. Dekkers, “Asset description metadata schema (adms),” W3C Working Group, 2013.

[14] A. Schwarte, P. Haase, K. Hose, R. Schenkel and M. Schmidt, “FedX: Optimization

techniques for federated query processing on Linked Data,” in ISWC2011, Part I, 2011.

[15] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo and E. Ruckhaus, “ANAPSID: Anadaptive

query processing engine for SPARQL endpoints,” in ISWC2011, Part I, 2011.

[16] G. Bieber and J. Carpenter, “Introduction to service-oriented programming (rev 2.1),”

OpenWings Whitepaper, April, 2001.

[17] R. Chinnici, J. J. Moreau, A. Ryman and S. Weerawarana, “WSDL 0.2 Specification,” W3C,

2007. [Online]. Available: https://www.w3.org/TR/2007/REC-wsdl20-20070626/.

[18] J. Domingue, D. Roman and M. Stollberg, “Web service modeling ontology (WSMO)-An

ontology for semantic web services,” 2005).

[19] R. Akkiraju, J. Farrell, J. A. Miller, M. Nagarajan, A. P. Sheth and K. Verma, Web service

semantics-wsdl-s, 2005.

[20] wikipedia, “Hypermedia,” [Online]. Available: https://en.wikipedia.org/wiki/Hypermedia.

[21] “Hydra,” [Online]. Available: http://www.markus-lanthaler.com/hydra/.

[22] “HAL,” [Online]. Available: http://stateless.co/hal_specification.html.

[23] “SIREN,” [Online]. Available: https://github.com/kevinswiber/siren.

[24] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Manuel, M. Fabrizio, M. Ruslan and S. Larisa,

“Microservices: yesterday, today, and tomorrow,” n Present and ulterior software

engineering, pp. 195-216, 2017.

[25] “VMware,” [Online]. Available: https://www.vmware.com.

[26] “VirtualBox,” [Online]. Available: https://www.virtualbox.org/wiki/VirtualBox.

[27] S. Newman, Building microservices: designing fine-grained systems., O'Reilly Media, Inc.,

2015.

SPRINT-WP3-D-PDM-001-02 Page 49 of 50 17/05/2019

Contract No. H2020 – 826172

[28] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes.,” IEEE Cloud

Computing 1, no. 3, pp. 81-84, 2014.

[29] “Docker,” [Online]. Available: https://www.docker.com/). .

[30] “Linux containers,” [Online]. Available: https://linuxcontainers.org/.

[31] “Kubernetes,” [Online]. Available: https://kubernetes.io.

[32] K. Knoernschild, ava application architecture: modularity patterns with examples using OSGi,

Prentice Hall Press, 2012.

[33] “OSGi,” [Online]. Available: https://www.osgi.org/.

[34] “Camel,” [Online]. Available: http://camel.apache.org/.

[35] G. Hohpe and B. Woolf, Enterprise integration patterns: Designing, building, and deploying

messaging solutions., Addison-Wesley Professional, 2004.

[36] G. Hohpe and B. Woolf, “Content-Based Router,” [Online]. Available:

https://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html.

[37] G. Hohpe and B. Woolf, “Content Enricher,” [Online]. Available:

https://www.enterpriseintegrationpatterns.com/patterns/messaging/DataEnricher.html.

[38] P. Banerjee, R. Friedrich, C. Bash, P. Goldsack, B. Huberman, J. Manley, C. Patel, P.

Ranganathan and A. Veitch, “Everything as a service: Powering the new information

economy,” Computer, pp. 36--43, 2011.

[39] P. Mell and T. Grance, “https://www.nist.gov/programs-projects/nist-cloud-computing-

program-nccp,” [Online]. Available:

https://www.nist.gov/sites/default/files/documents/itl/cloud/cloud-def-v15.pdf.

[40] “Heroku,” [Online]. Available: https://www.heroku.com/.

[41] S. Hietanen, “Mobility as a Service,” the new transport model , pp. 2-4, 2014.

[42] R. Steinmetz and K. Wehrle, “What Is This “Peer-to-Peer” About?.,” in In Peer-to-peer

systems and applications, Berlin, 2005.

[43] S. Saroiu, P. K. Gummadi and S. D. Gribble, “Measurement study of peer-to-peer file sharing

systems.,” Multimedia computing and networking, pp. ol. 4673, pp. 156-171, 2002.

[44] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek and H.

Balakrishnan, “Chord: a scalable peer-to-peer lookup protocol for internet applications,”

IEEE/ACM Transactions on Networking (TON), pp. 17--32, 2003.

[45] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker, “A scalable content-

addressable network,” ACM, 2001.

[46] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location, and routing for

large-scale peer-to-peer systems,” in IFIP/ACM International Conference on Distributed

Systems Platforms and Open Distributed Processing, Springer, 2001, pp. 329--350.

[47] “Napster,” [Online]. Available: http://www.napster.com/.

[48] E. Meshkova, J. Riihiarvi, M. Petrova and P. Mahonen, “A survey on resource discovery

mechanisms peer-to-peer and service discovery frameworks,” Computer networks 52, no. 11,

pp. 2097-2128, 2008.

[49] B. Furht and A. Escalante, Handbook of cloud computing, New York: Springer, 2010.

[50] S. Jo and J. Han, “Convergence P2P cloud computing,” Peer-to-Peer Networking and

Applications, pp. 1153--1155, 2018.

SPRINT-WP3-D-PDM-001-02 Page 50 of 50 17/05/2019

Contract No. H2020 – 826172

[51] V. Sinha, A. Gupta and G. S. Kohli, “Comparative Study of P2P and Cloud Computing

Paradigm Usage in Research Purposes,” in In International Conference on Advances in

Communication, Network, and Computing, Berlin, Heidelberg, 2011.

[52] D. P. Anderson and G. Fedak, “The computational and storage potential of volunteer

computing,” in In Sixth IEEE International Symposium on Cluster Computing and the Grid

(CCGRID'06), vol. 1, 2006.

[53] “bIoTope,” [Online]. Available: https://biotope-project.eu/.

[54] N. Kolbe, S. Kubler, J. Robert, Y. Le Traon and A. Zaslavsky, “Towards semantic

interoperability in an open IoT ecosystem for connected vehicle services,” in 2017 Global

Internet of Things Summit (GIoTS), IEEE, 2017.

[55] bIoTope, “D3.5 Prototype of Platform Integration using API Mediators,” [Online]. Available:

https://biotope-project.eu/results.

[56] J. Robert, S. Kubler, N. Kolbe, A. Cerioni, E. Gastaud and K. Framling, “Open IoT ecosystem

for enhanced interoperability in smart cities—Example of Metropole de Lyon,” Sensors, vol.

17, p. Multidisciplinary Digital Publishing Institute, 2017.

[57] “openIoT,” [Online]. Available: http://www.openiot.eu/.

[58] “OpenIoT Project,” [Online]. Available: https://github.com/OpenIotOrg/openiot.

[59] M. Compton, P. Barnaghi, L. Bermudez, R. Garcia-Castro, O. Corcho, S. Cox, J. Graybeal,

M. Hauswirth, C. Henson, A. Herzog and others, “The SSN ontology of the W3C semantic

sensor network incubator group,” Web semantics: science, services and agents on the World

Wide Web, pp. 25--32, 2012.

[60] J. Soldatos, N. Kefalakis, M. Hauswirth, M. Serrano, J.-P. Calbimonte, M. Riahi, K. Aberer,

P. P. Jayaraman, A. Zaslavsky, I. P. Zarko and others, “Openiot: Open source internet-of-

things in the cloud,” in Interoperability and open-source solutions for the internet of things,

Springer, 2015, pp. 13--25.

[61] N. Loutas, E. Kamateri, F. Bosi and K. Tarabanis, “Cloud computing interoperability: the

state of play,” in IEEE Third International Conference on Cloud Computing Technology and

Science, 2011 .

[62] R. Rezaei, T. K. Chiew, S. P. Lee and Z. S. Aliee, “A semantic interoperability framework for

software as a service systems in cloud computing environments,” Expert Systems with

Applications, Vols. 5751--5770, no. Elsevier, 2014.

[63] M. author, “my paper,” my journal.

